On point separation by arrangements of lines

Nikhil Marda
Mentor: Borys Kadets

6th Annual PRIMES Conference

May 21, 2016

Problem

- We have a set X of N points and some integer D.
- Can we draw D lines such that each cell contains the same number of points?

Problem

Problem

Problem

- An arrangement of D lines divides the plane into $\approx D^{2}$ cells.
- An equal separation means each cell has $\approx D^{-2} N$ points.
- If we find a cell with more points, then the set is not separated equally.

Problem

For an arrangement of D lines A_{D}, consider the maximum number of points of X that lie in a single cell. Then the cutting number is the minimum of this value over all A_{D} :

$$
\operatorname{CUT}_{\mathrm{D}}(\mathrm{X})=\min _{A_{D}}\left(\max _{\text {cells }} \mid X \bigcap \text { cell } \mid\right)
$$

Problem

Can X be divided evenly among the cells defined by some arrangement?

Problem

This is where our inquiry begins. Our problem and results are related to various important concepts in mathematics.

- The Szemeredi-Trotter Theorem in incidence geometry.
- Stabbing numbers in computational geometry.
- The Erdos-Szekeres Conjecture in Ramsey theory.

Problem

- We have $2 D$ variables and $\approx D^{2}$ conditions to satisfy.
- Seems unlikely to always be possible.

Counterexample

Suppose X lies on convex curve Y and an arrangement of D lines is added.

Counterexample

- Each line intersects Y at most 2 times.
- Y is broken into at most $2 D$ parts.
- Each is contained in a different cell.
- $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X}) \geq\left\lceil\frac{N}{2 D}\right\rceil>\frac{N}{D^{2}}$
- X cannot be evenly separated.

Convexity

- $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X})$ is large when X lies on a convex curve.
- The existence of a large convex subset is an obstacle to equal separation.
- We can show a convex curve gives the largest $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X})$.

Upper bound on cutting number

Theorem
If $D \geq\left\lceil\frac{N}{2 k}\right\rceil$, then $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X}) \leq k$.

Upper bound on cutting number

Corollary
$\operatorname{CUT}_{\mathrm{D}}(\mathrm{X}) \leq\left\lceil\frac{N}{2 D}\right\rceil$ for any set X.

Corollary
If X lies on some convex curve, $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X})=\left\lceil\frac{N}{2 D}\right\rceil$.

Convexity

The convex number of X is the maximum number of points that lie on some convex curve in the plane:

$$
\operatorname{CON}(\mathrm{X})=\max _{\text {convex curves }} \mid X \bigcap \text { curve } \mid .
$$

Convexity

- $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X}) \geq \frac{\operatorname{CON}(\mathrm{X})}{2 D}$.
- If $\operatorname{CON}(X)$ is large, then $\operatorname{CUT}_{D}(X)$ is large.
- Does a large $\mathrm{CUT}_{\mathrm{D}}(\mathrm{X})$ imply a large $\mathrm{CON}(\mathrm{X})$?

Convexity

Convexity

Proposition

There exists a set of N points X such that $\operatorname{CUT}_{\mathrm{D}}(X) \geq \frac{N}{4 D}$ and $C O N(X) \leq 4 \sqrt[3]{N}$.

Convexity

- Convexity is not the only obstacle to equal separation.
- We must find some other classification method.

Curves defined by stabbing number

Definition

The stabbing number of a geometric object is defined as the maximum number of intersections between it and any line in the plane.

Figure: Stabbing number of 2, 4, and 6 respectively.

Curves defined by stabbing number

Definition

A d-curve is a curve with a stabbing number of d or less.

Definition

The degree $\mathbf{d}(\mathbf{X})$ of X is the minimum d for which a d-curve contains X.

Figure: 2-curve, 4-curve, and 6-curve respectively.

Curves defined by stabbing number

- We have that $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X}) \geq \frac{N}{d(X) \cdot D}$.

Curves defined by stabbing number

- A small $d(X)$ means a large $\operatorname{CUT}_{\mathrm{D}}(\mathrm{X})$.
- If X can be separated equally, $d(X)$ is large.
- Considering all subsets of X, we have

$$
\operatorname{CUT}_{D}(\mathrm{X}) \geq \max _{Y \subseteq X} \frac{|Y|}{d(Y) \cdot D} \geq \frac{N}{d(X) \cdot D}
$$

- We seek to establish the properties of $d(X)$ and d-curves.

Properties of degree

For fixed N, how big can $d(X)$ be?

Properties of degree

Definition

Let $D(N)$ be the maximum degree of any set of N points.
Examples

- $D(1)=D(2)=D(3)=2$
- $D(4)=D(5)=D(6)=4$

Properties of degree

Theorem

We can show that $D(N)=\Theta(\sqrt{N})$.

Properties of degree

- Existing literature shows there exists a simple spanning tree with stabbing number $O(\sqrt{N})$.
- We can convert this tree into a d-curve without increasing the order of the stabbing number.
- We can show that the bound is tight.

Properties of d-curves

Lemma

Let A and B be non-intersecting curves consisting of a finite number of points. Then there exists a curve Y through all the points of A and B such that $d(Y) \leq d(A)+d(B)+2$.

Proposition

Suppose we have k non-intersecting curves $Y_{1}, Y_{2}, \ldots, Y_{k}$ consisting of a finite number of points. Then curve Z containing all points of Y_{i} has $d(Z) \leq 2 D(k)+\sum_{i} d\left(Y_{i}\right)$.

Erdos-Szekeres problem on points in convex position

- What is $E S(n)$, the smallest number of points that must contain a convex curve with n points?
- The Erdos-Szekeres conjecture postulates $E S(n)=2^{n-2}+1$.
- However for 80 years, $E S(n) \leq 4^{n-o(n)}$.
- In April 2016, Andrew Suk gave $E S(n) \leq 2^{n+o(n)}$.

Existence of n points on a d-curve

We can generalize this problem to finding n points on a d curve.

Definition

Let $F(n, d)$ be the smallest number of points needed for a set to contain a d-curve with n points.

All convex curves are d-curves, so $F(n, d) \leq F(n, 2)=E S(n) \leq 2^{n+o(n)}$.

Existence of n points on a d-curve

Theorem

For arbitrarily large fixed d, we have $F(n, d) \leq 4^{n / d+o(n)}$.

- Note how $d=2$ gives the bound for $E S(n)$.
- The proof involves the splitting method used for finding the upper bound on $\mathrm{CUT}_{\mathrm{D}}(\mathrm{X})$.
- It also utilizes the previous lemma involving unions of d-curves.

Future research

- Does there exist some k such that if all subsets of k points in X lie on a d-curve then X lies on a d-curve?
- How can we use the geometry of X to find tighter upper bounds on $\mathrm{CUT}_{\mathrm{D}}(\mathrm{X})$?
- Is degree the only obstacle to separating a set of points equally?

Acknowledgments

- My mentor Borys Kadets for the invaluable insight and guidance.
- Dr. Larry Guth for suggesting this project.
- The MIT PRIMES-USA Program for this research opportunity.
- Dr. Tanya Khovanova for helpful advice and suggestions.
- My parents, for their continued support.

