On point separation by arrangements of lines

Nikhil Marda Mentor: Borys Kadets

6th Annual PRIMES Conference

May 21, 2016

1 / 33

- We have a set X of N points and some integer D.
- Can we draw D lines such that each cell contains the same number of points?

- An arrangement of D lines divides the plane into $\approx D^2$ cells.
- An equal separation means each cell has $\approx D^{-2}N$ points.
- If we find a cell with more points, then the set is not separated equally.

For an arrangement of D lines A_D , consider the maximum number of points of X that lie in a single cell. Then the cutting number is the minimum of this value over all A_D :

$$\mathsf{CUT_D}(\mathsf{X}) = \min_{A_D} (\max_{\mathsf{cells}} |X \cap \mathsf{cell}|).$$

Can X be divided evenly among the cells defined by some arrangement?

This is where our inquiry begins. Our problem and results are related to various important concepts in mathematics.

- The Szemeredi-Trotter Theorem in incidence geometry.
- Stabbing numbers in computational geometry.
- The Erdos-Szekeres Conjecture in Ramsey theory.

- We have 2D variables and $\approx D^2$ conditions to satisfy.
- Seems unlikely to always be possible.

Counterexample

Suppose X lies on convex curve Y and an arrangement of D lines is added.

Counterexample

- Each line intersects *Y* at most 2 times.
- Y is broken into at most 2D parts.
- Each is contained in a different cell.
- $CUT_D(X) \ge \lceil \frac{N}{2D} \rceil > \frac{N}{D^2}$
- X cannot be evenly separated.

- $CUT_D(X)$ is large when X lies on a convex curve.
- The existence of a large convex subset is an obstacle to equal separation.
- We can show a convex curve gives the largest $CUT_D(X)$.

Upper bound on cutting number

Theorem

If $D \geq \lceil \frac{N}{2k} \rceil$, then $CUT_D(X) \leq k$.

Upper bound on cutting number

Corollary

 $CUT_D(X) \leq \lceil \frac{N}{2D} \rceil$ for any set X.

Corollary

If X lies on some convex curve, $CUT_D(X) = \lceil \frac{N}{2D} \rceil$.

The convex number of X is the maximum number of points that lie on some convex curve in the plane:

$$\mathsf{CON}(\mathsf{X}) = \max_{\mathsf{convex\ curves}} |X \bigcap \mathsf{curve}|.$$

- $CUT_D(X) \ge \frac{CON(X)}{2D}$.
- If CON(X) is large, then $CUT_D(X)$ is large.
- Does a large $CUT_D(X)$ imply a large CON(X)?

Proposition

There exists a set of N points X such that $CUT_D(X) \ge \frac{N}{4D}$ and $CON(X) \le 4\sqrt[3]{N}$.

- Convexity is not the only obstacle to equal separation.
- We must find some other classification method.

Definition

The **stabbing number** of a geometric object is defined as the maximum number of intersections between it and any line in the plane.

Figure: Stabbing number of 2, 4, and 6 respectively.

Definition

A **d-curve** is a curve with a stabbing number of d or less.

Definition

The **degree** d(X) of X is the minimum d for which a d-curve contains X.

Figure: 2-curve, 4-curve, and 6-curve respectively.

• We have that $CUT_D(X) \ge \frac{N}{d(X) \cdot D}$.

- A small d(X) means a large $CUT_D(X)$.
- If X can be separated equally, d(X) is large.
- Considering all subsets of X, we have

$$\mathsf{CUT}_\mathsf{D}(\mathsf{X}) \ge \max_{\mathsf{Y} \subset \mathsf{X}} \frac{|\mathsf{Y}|}{d(\mathsf{Y}) \cdot D} \ge \frac{\mathsf{N}}{d(\mathsf{X}) \cdot D}$$

• We seek to establish the properties of d(X) and d-curves.

For fixed N, how big can d(X) be?

Definition

Let D(N) be the maximum degree of any set of N points.

Examples

- D(1) = D(2) = D(3) = 2
- D(4) = D(5) = D(6) = 4

Theorem

We can show that $D(N) = \Theta(\sqrt{N})$.

- Existing literature shows there exists a simple spanning tree with stabbing number $O(\sqrt{N})$.
- We can convert this tree into a d-curve without increasing the order of the stabbing number.
- We can show that the bound is tight.

Properties of *d*-curves

Lemma

Let A and B be non-intersecting curves consisting of a finite number of points. Then there exists a curve Y through all the points of A and B such that $d(Y) \le d(A) + d(B) + 2$.

Proposition

Suppose we have k non-intersecting curves $Y_1, Y_2, ..., Y_k$ consisting of a finite number of points. Then curve Z containing all points of Y_i has $d(Z) \leq 2D(k) + \sum_i d(Y_i)$.

Erdos-Szekeres problem on points in convex position

- What is ES(n), the smallest number of points that must contain a convex curve with n points?
- The Erdos-Szekeres conjecture postulates $ES(n) = 2^{n-2} + 1$.
- However for 80 years, $ES(n) \le 4^{n-o(n)}$.
- In April 2016, Andrew Suk gave $ES(n) \leq 2^{n+o(n)}$.

Existence of n points on a d-curve

We can generalize this problem to finding n points on a d curve.

Definition

Let F(n, d) be the smallest number of points needed for a set to contain a d-curve with n points.

All convex curves are d-curves, so $F(n,d) \le F(n,2) = ES(n) \le 2^{n+o(n)}$.

Existence of n points on a d-curve

Theorem

For arbitrarily large fixed d, we have $F(n, d) \leq 4^{n/d + o(n)}$.

- Note how d = 2 gives the bound for ES(n).
- The proof involves the splitting method used for finding the upper bound on CUT_D(X).
- It also utilizes the previous lemma involving unions of d-curves.

Future research

- Does there exist some k such that if all subsets of k points in X lie on a d-curve then X lies on a d-curve?
- How can we use the geometry of X to find tighter upper bounds on CUT_D(X)?
- Is degree the only obstacle to separating a set of points equally?

Acknowledgments

- My mentor Borys Kadets for the invaluable insight and guidance.
- Dr. Larry Guth for suggesting this project.
- The MIT PRIMES-USA Program for this research opportunity.
- Dr. Tanya Khovanova for helpful advice and suggestions.
- My parents, for their continued support.